Компьютерный журнал для новичков и профессионалов

USBISP - заливаем собственную прошивку в фонарик. Экономическая целесообразность применения "драйвера" в светодиодном фонаре? Фонарь на микроконтроллере

Как известно диод - это токовый прибор, питать его нужно постоянным током, а не напряжением. Светодиоды – тоже диоды, и их тоже нужно питать стабильным током. При стационарной установке светодиода проблема его питания легко решается с помощью резистора, который задает ток через светодиод. Рассчитать номинал резистора помогает закон Ома: R=(Uпит-Uпад)/I , где Uпит – напряжение источника питания в вольтах, Uпад – напряжение, которое падает на светодиоде (примерно 3-3,5В, зависит от тока через светодиод), а I – желаемый ток через светодиод в амперах. Далее подбирается резистор ближайшего номинала, который есть в наличии и все хорошо работает. При больших токах резистор будет сильно греться, так что стоит его брать по мощнее.

Минусом стабилизатора на резисторе является неспособность реагировать на изменение напряжения питания (ток через светодиод и как следствие его яркость будут падать по мере разряда батареи), а также никому не нужная рассеиваемая мощность на резисторе. Для решения этой проблемы существуют так называемые драйвера светодиода (стабилизаторы тока). Стабилизаторы тока бывают повышающими (Boost) и понижающими (Buck). Boost стабилизаторы используются, когда напряжение на батареях меньше, чем падение напряжения на светодиоде, а Buck – когда напряжение на батарея больше падения на светодиоде.
При проектировании своего «неубиваемого» фонарика я задумал использовать параллельную связку из литиевых аккумуляторов или 3шт. АА батарейки (т.е. питающее входное напряжение драйвера должно быть в пределах 3-4,5В). Для этой задачи необходимо использовать Buck драйвер, но при этом не используется около 20% запасенной энергии в батареях! Эти 20% можно выжать, вставив в схему еще и Boost драйвер, который будет включаться, когда для Buck драйвера будет слишком низкое напряжения питания. Все это очень муторно и громоздко, 2 драйвера + компаратор или микроконтроллер для переключения. Так дело далеко не зайдет. Почитав раздел светотехники на speleo.ru открыл для себя Boost/Buck стабилизатор с нужным мне диапазоном питающих напряжений и недурной эффективностью (достижимой при вдумчивой намотке индуктивности). Эта микросхема следит за питающим напряжение и автоматически переключает встроенные Boost/Buck драйвера. Силовые ключи в мостовой схеме интегрированы в саму микросхему, и позволяют коммутировать токи до 1А. Схема включения была взята из и немного модифицирована:


Конденсаторы С3,С4 – танталовые в СМД исполнении 68мкФ, С1 ,С2 ,С5 – керамические по 0,1мкФ. С намоткой индуктивности я связываться не стал, поэтому купил взял SUMIDA CDRH5D28RNP-5RØN на 5мкГн. Как видно, микросхема драйвера имеет 2 «канала», которые можно включать по отдельности или вместе с помощью высокого логического уровня на выводах EN1 , EN2 . Токи «каналов» задается с помощью 2-х резисторов R1 , R2 которые рассчитывается по формуле R1=3580*0.8/I1 , R2=3580*0.8/I2 . Главное, чтобы суммарный ток «каналов» был меньше 1А, иначе есть хорошая вероятность спалить внутренние ключи. Далее по задумке, в фонарике будет 2 режима, «ходовой» и «мощный» с соответствующими токами через диод 0,2А и 1А (мощный режим достигается путем включения 2-х «каналов» по 0,2А и 0,8А одновременно). То есть резистор R1 , задающий «ходовой» режим должен быть номиналом 15кОм, а R2 – 3,9кОм. Переключатся режимы будут с помощью тактовой кнопки, герметизированной кусочком резины и прижимной пластиной. То есть для этого нужно повесить еще микроконтроллер, который будет считывать нажатия кнопки и переключать режимы свечения диода. Включение/выключение фонаря будет производиться с помощью длительного (2с) удержания кнопки. А переключение «ходового» и «мощного» режима будет с помощью короткого нажатия кнопки (0,5с). Полная схема устройства с микроконтроллером:


Микроконтроллер взял тот, который был ближе всего под рукой. Им оказался в SO-14 исполнении. Прошивка его тривиальна, кроме обработки нажатия клавиши, где учитывается время удержания. Когда фонарик выключен – микроконтроллер переходит в Power-Down режим, и потребляет всего 0,1мкА (LTC3454 в SHUTDOWN режиме потребляет тоже всего ничего – 1мкА) и ощутимо подсаживать аккумулятор не будет. Также добавил еще один элемент, конденсатор С6 – 0,1мкФ на питании микроконтроллера.

    #include

    #include

  1. #define EN1 2

    #define EN2 3

  2. #define KEY 2

  3. unsigned char mode= 0 ;

    unsigned char sleep_flag= 1 ;

  4. void pause (unsigned int a)

    { unsigned int i;

  5. for (i= a; i> 0 ; i-- )

  6. void set_mode(void )

    if (mode== 0 ) PORTA&= ~((1 << EN1) | (1 << EN2) ) ;

    if (mode== 1 ) PORTA= (1 << EN1) ;

    if (mode== 2 ) PORTA= (1 << EN1) | (1 << EN2) ;

  7. ISR (INT0_vect)

    { int count;

  8. count= 0 ;

    count= count+ 1 ;

  9. if (count== 1000 ) {

  10. if (mode== 1 ) mode= 2 ;

    else if (mode== 2 ) mode= 1 ;

  11. while ((PINB& _BV(KEY) ) == 0x00 )

    count= count+ 1 ;

    if (count== 9000 ) {

    if (mode== 0 ) mode= 1 ;

    else {

    mode= 0 ;

    sleep_flag= 1 ;

    set_mode() ;

  12. while ((PINB& _BV(KEY) ) == 0x00 )

    set_mode() ;

  13. return ;

  14. int main(void )

    DDRB= 0x04 ; //PB2 как вход

    PORTB= 0x04 ;

  15. DDRA= 0x0c ; //PA2,PA3 как выхода

  16. pause(1000 ) ; //Пауза

  17. GIMSK= (1 << INT0) ;

    MCUCR= (0 << ISC00) | (0 << ISC01) ; //Прерывание по низкому уровню на PB2

    MCUCR|= (1 << SM1) | (0 << SM0) | (1 << SE) ; //Разрешить power-down режим

    sei() ; //Разрешить прерывания

Долго пылился на полке старый фонарик - ручка «Duracell». Работал он от двух батареек формата ААА, на лампочку накаливания. Очень удобен был, когда нужно посветить в какую-либо узкую щель в корпусе электронного прибора, но всё удобство от применения перечеркивал «жор» батареек. Можно было бы выкинуть этот раритет и поискать в магазинах что-то современнее, но… Это не наш метод... © Потому на Али была куплена микросхема светодиодного драйвера, которая помогла перевести фонарик на светодиодный свет. Переделка очень простая, которую сможет осилить, даже начинающий радиолюбитель, умеющий держать в руках паяльник… Так что, кому интересно, велком под Кат…

Микросхема драйвер покупалась давно, больше года назад, и ссылка на магазин уже ведет в «пустоту», потому я нашел аналогичный товар, у другого продавца. Сейчас этот драйвер стоит дешевле, чем я покупал его. Что же это за «клоп» с тремя ножками, давайте рассмотрим подробнее.
Для начала ссылка на даташит: www.diodes.com/assets/Datasheets/ZXLD381.pdf
Микросхема представляет собой Led драйвер способный работать от низкого напряжения, к примеру, одной батарейки 1.5В формата ААА. Микросхема драйвера имеет высокую эффективность (КПД) 85% и способна «высосать» батарейку практически полностью, до остаточного напряжения 0,8В.
Характеристики микросхемы драйвера

под спойлером


Схема драйвера очень проста…


Как вы видите, кроме этой микросхемы «клопа» нужна всего одна деталь - дроссель (индуктор), и именно индуктивностью дросселя задается ток светодиода.
Для фонарика в место лампочки, я подобрал яркий белый светодиод, потребляющий ток 30мА, соответственно мне нужно было намотать дроссель индуктивностью 10мкГн. Эффективность драйвера составляет 75-92% в диапазоне 0.8-1.5В, что очень неплохо.

Приводить здесь чертеж печатной платы не буду, т.к нет смысла, плату можно изготовить за пару минут, просто процарапав фольгу в нужных местах.


Дроссель можно намотать, или взять готовый. Я намотал на гантельке, которая попалась под руку. При самостоятельном изготовлении необходимо контролировать индуктивность при помощи LC метра. В качестве корпуса для платы драйвера был использовать двух кубовый одноразовый шприц, внутри которого вполне достаточно места, что бы разместить все необходимые компоненты. С одной стороны шприца -резиновая пробка с светодиодом и контактной площадкой, с другой стороны вторая контактная площадка. Размер отрезка шприца подбирается по месту и приблизительно равен размеру батарейки ААА (мизиньчиковой, как её называют в народе)


Собственно собираем фонарик


И видим, что светодиод ярко светит от одной батарейки…


Ручка-фонарик в сборе выглядит вот так


Светит хорошо и вес фонарика стал меньше, потому как используется всего одна батарейка, а не две, как было изначально…

Вот такой получился коротенький обзор… При помощи микросхемы драйвера, вы можете переделать почти любой раритетный фонарик, на питание от одной батарейки 1.5В. Если есть вопросы спрашивайте…

Планирую купить +73 Добавить в избранное Обзор понравился +99 +185

Первая часть про тюнинг и ремонт фонаря, вводная. Тут будут рассмотрены общее устройство среднестатистического фонаря, параметры мощных светодиодов и чуток нудной математики с ними связанные.

Итак, у вас есть светодиодный фонарик, но он сгорел или не устраивает по якости, или вы хотите его переделать в оружейный. Какие у вас есть варианты? Давайте разберёмся.

Конструкция сферического фонаря в вакууме.

Подавляющее большинство фонарей состоят из следующих частей:

  1. корпус - обычная трубка с резьбой на концах;
  2. батарейка - живёт внутри корпуса;
  3. торцевая кнопка - вкручивается в корпус на резьбе служит для включения фонаря. Иногда фонарь может комплектоваться вторым задником с выносной кнопкой;
  4. головка фонаря - вкручивается в корпус, имеет защитное стекло впереди. Иногда эта деталь бывает разборной (как на фото, из двух частей), иногда нет;
  5. светоизлучающий элемент - объединенный в один блок светодиод, формирователь пучка света, теплоотвод светодиода и драйвер светодиода. Иногда выпускается зацело с головкой фонаря.

Светоизлучающй элемент.

Эта самая сборка может быть разного исполнения. Очень распространены головки для фонаря Ultrafire WF-502B, они даже продаются разных видов, разной мощности, с кучей функций и т.п.
Например, на fasttech.com . Фонари с элементом этого типа хороши тем, что можно купить несколько модулей для разных задач и просто менять их.

Светодиод пока что оставим в покое, он заслуживает отдельного рассмотрения ниже, драйвер в принципе тоже, а вот оставшиеся детальки мы сейчас рассмотрим.

Формирователь пучка света бывает трех видов:

1. линза - самый простой и наименее эффективный вариант, так как в световой пучок собираются не всё излучение кристалла. Очень часто линзу можно перемещать, изменяя фокусировку пучка света, что является единственным плюсом данного решения.


2. коллиматор - деталь из прозрачного пластика, выполненная для получения пучка с заданными параметрами. Для этого коллиматор делается так, чтобы соответствовать определенной конструкцией линзы на светодиоде, поэтому поставить коллиматор от одного светодиода на светодиод другой конструкции не получится - параметры светового пучка будут другие.

3. отражатель - пришедшая от ламп накаливания конструкция, адаптированная под светодиод. Простая, надёжная и проверенная временем конструкция. Вообще, отражатель как и коллиматор оптимизируется под опреледенный светодиод, но с меньшей критичностью. На правом фото видно, что кристалл светодиода отражается всей площадью отражателя.

На практике замена светодиода вполне возможна, как и замена отражателя. Бывают как с гладкой поверхностью, дающей более жесткий луч, так и с бугристой, мне последний в помещениях понравился больше.


Теплоотвод, он же корпус, к которому зачастую прикручивается отражатель и в который монтируется драйвер светодиода. Обычно, рассчитан на установку светодиода на подложке - алюминиевой пластине, к которой припаивается светодиод. На фото показаны все механические компоненты модуля. Слева направо: отражатель, теплоотвод, пружина для отрицательного вывода (контачит с корпусом фонарика) и пружинка для положительного вывода (контачит с плюсом батарейки). Последняя пружинка припаивается к плате драйвера светодиода.

Параметры светодиодов.


Главным параметром с точки зрения качества освещения являются спектр излучения и яркость. , конструктивно это определяется качеством и хитростями люминофора. Увы, этот параметр может очень сильно отличаться даже для разных серий одного производителя. А уж что там намазывает дядюшка Ляо в своём подвале не знает даже сам Ляо. Дешевенькие фонари на сотню с гаком люмен уверенно проигрывают по качеству освещения (тому, насколько хорошо видно детали освещаемого объекта и насколько вообще эти детали разборчивы глазом) даже не очень мощным фонарям с галогенками.

Серьезные дядьки в лице компании Cree приводят следующий график для излучения их светодиодов серии XM-L. Увы, это усреднённые значения, насколько он равномерный, есть ли там провалы, нам не очень известно. По горизонтали длина волны, по вертикали относительная мощность излучения.


На графике приводятся три кривые - для разных цветовых температур. Видно, что светодиоды с меньшей температурой (красный) залезают в инфракрасную область (длина волны больше 740 нм), однако очень-очень мало и недалеко - там реально единицы процента мощности излучаются. Это причина того, что получить из любого белого светодиодного фонаря пристойный ИК фонарь простым добавлением ИК фильтра (как это легко делается с фонарем с лампой накаливания) невозможно. Светить он формально будет, но КПД - никакущий.
Цветовая температура это параметр-компаньон, напрямую связанный со спектром. Цветовая температура определяется как температура абсолютно чёрного тела (такой хитрый фетиш физиков), при которой оно испускает излучение того же цветового тона, что и рассматриваемое излучение. Для дневного света это 6500К, для ламп накаливания 2700-4000К. Чем меньше цветовая температура, тем боее желтый оттенок у света.

По личным наблюдениям, со светодиодами с меньшей цветовой температурой лучше видно детали освещаемых объектов. По крайней мере для меня. Недостатком светодиодов тёплого белого света является их меньшая отдача света - они менее яркие, чем более "знойные" собратья.

Второе, что нас интересует - это яркость светодиода. Указывается в документации как яркость при каком-то определенном токе через светодиод. К примеру, для уже упомянутого XM-L указана яркость разных токах. К примеру, XM-L T6 при 700мА (2Вт) имеет световой поток 280 люмен (400 лм/А), при 1А имеет 388 лм (388 лм/А), при 1,5А - 551 лм (367 лм/А), при 2А - 682 лм (341 лм/А). В скобочках указана удельная яркость в зависимости от тока. Она падает на 17% при повышении тока с 700мА до 2А. То есть чем выше ток, тем меньше эта удельная яркость, то есть ниже КПД. По графику, кстати, честно видно.


Еще один важный параметр светодиода - его мощность. Это максимальная мощность, которую можно в него "вдуть". Разумеется, на максимуме он будет жить меньше, чем на меньшей мощности, поэтому лучше его немного "недокормить". В свою очередь мощность определяет максимальный ток через светодиод. Как правило, мощность и ток через светодиод связаны нелинейной зависимостью, так как зависят еще и от падения напряжения на диоде. Вот для XM-L: по горизонтали прямое падение напряжения, по вертикали ток через диод.


Падение напряжения на светодиоде типично порядка 3 вольт для белого светодиода и зависит от тока через светодиод. Смотрим на график: при 200мА имеем падение в 2,7в, при 700мА - 2,9В, при 1А - 2,97В, при 1,5А - 3,1В, при 2А - 3,18В.

Если взять хитрые светодиоды типа MC-E с четыремя кристаллами это будет 350мА - 3,1В, 700мА - 3,5В. Совсем мощные кристаллы на 10-20 Вт будут иметь падение напряжения около 10В, а еще более мощные... ну, могут и еще больше.

Кстати, если перевести удельную светимость в зависимости от тока этих XM-L в светимость в зависимости от мощности, то получим, что у нас при токе I=700мА и падении напряжения U=2,9В потребляется мощность 2,03 Вт, а световой поток 280лм, то есть 138 лм/Вт. Продолжаем дальше и полчаем для 1, 1,5 и 2 А тока соответственно 130, 118,5 и 107 лм/Вт. Разница в 29%. Вот и ломай голову, какой режим выбирать.

Что же нам дают знания? Хотя бы понимание того, какое именно питание должно быть у того или иного светодиода, что от него можно получить, на какой другой светодиод можно заменить сгоревший светодиод фонаря. Но картинка не будет полной без знаний о питании светодиодов.

Питание фонаря.


Как правило, в фонарях используют либо литиевые батареи (номинальное напряжение 3В, совпадает с максимальным и при разряде несколько падает), либо литиевые аккумуляторы (номинальное напряжение 3,7 В, а минимальное и максимальное - приблизительно 3,2 и 4,2 В, про аккумуляторы можно почитать , там есть про типы и их отличия).

Кстати, аккумуляторы как на фото выше я бы по возможности избегал. Невысокое качество и сильно завышенная емкость (из заявленных 2500мА/ч там хорошо если 1800 будет). Лучше брать фирменные ячейки Samsung и прочих. Неплохие аккумуляторные ячейки можно добыть из их батарей для ноутбуков - даже замучанные нарзаном они получше китайчатских будут. Хотя, даже у китайских бывают "внутри" нормальные ячейки.

Иногда в светодиодных фонарях используют пальчиковые батарейки, но у них плохо с отдачей токов, необходимых для питания мощных светодиодов. То есть если в фонаре все-таки пальчиковые батарейки, то исправить проблему с низкой яркостью особенно не получится.

Драйверы.

Подавляющее большинство фонарей имеют на борту один светодиод мощностью порядка 3 Вт. То есть он имеет падение напряжения около 3 В и ток около 1 А. Для питания таких фонарей вполне достаточно одного Li-Ion (или Li-Po) аккумулятора. В таких фонарях могут стоять любые драйверные схемы, хоть обычные гасящие напряжения источники тока. При установке литиевых батареек их понадобится аж две штуки, причём КПД упадёт катастрофически. Хорошо, что нормальные импульсные драйверы светодиодов уже почти полностью вытеснили дешевенькие источники тока. В фонарях, использующих несколько элементов или аккумуляторов обязательно стоит импульсный драйвер.

Определить, какой драйвер перед вами можно по наличию катушки. Если она есть - наверняка это импульсный драйвер . Насколько он хорош и какие диапазоны входных напряжений терпит? Тут придётся искать документацию на применённую в нём микросхему. Например, для среднего драйвера на фото выше (жаль, плохо вышло) под лупой можно увидеть маркировку микросхемы 2541B и для неё удалось найти документацию (на китайском), у неё входное напряжение от 5 до 40 вольт, но КПД не указан. Итого, если взять топовый светодиод с КПД 30-40% и хороший импульсный драйвер (КПД будет около 90% в идеальном случае) получим КПД фонаря в 27-36 %. Не так уж и плохо.

А пример линейного драйвера на том же фото в правом нижнем углу. Вся электронная начинка сводится к защитному диоду и нескольким параллельно работающим линейным источникам тока. Можно прикинуть его КПД, как отношение напряжения на выходе к напряжению на входе. Если запитать схему от аккумулятора, то получаем максимальное напряжение в 4.2в, номинальное в 3,7в. До минимального скорее всего дело не дойдёт - драйверу нужно минимальное падение напряжения в пол вольта чтобы работать. Итак, считаем 3/4,2=70%. Однако, так как заткнётся он так и не использовав аккумулятор, то применять его надо с парой литиевых батарей (2 по 3В). Тогда КПД будет 3/6=50%. Не очень кучеряво, учитывая КПД кристалла в 20-30% и, как следствие, КПД всего фонаря в 10-15%. Надеюсь, понятно, что линейных драйверов надо избегать?...

Частенько в фонари ставятся драйверы, поддерживающие несколько режимов работы - полная мощность, средняя, пониженная и всякие моргалки. На фото такой драйвер внизу слева. Причём переключаются у дешевых моделей эти режимы кратковременным размыканием цепи. То есть слегка нажали на кнопку - фонарь гаснет и по отпусканию работает в новом режиме. Терпеть их не могу, по мне так лучше никакого переключателя режимов, чем такой.

Не всегда, но в некоторых моделях удаётся отучить фонарь от такого поведения и переделать под работу с выносной кнопкой (в виде оружейного фонаря). Но это уже отдельная тема.

Этот обзор будет интересен в основном любителям доделывать и переделывать китайские фонарики.

Речь пойдет об однорежимном 15-мм драйвере светодиода на 3 Вт. Вот ссылка на товар в FocalPrice . Для нетерпеливых и знающих сразу скажу, что драйвер нормальный, работает хорошо, по цене получился сравнительно дешевым (я дешевле не нашел, но выбирал из сравнительно небольшого числа магазинов). Ну а подробности - под катом.

После покупки фонарика Sipik SK58, который питается от батарейки или аккумулятора размера АА, у меня не раз возникала мысль, что светодиод в нем светит не в полную силу. Да еще при этом нагрузка на старенький NiMH аккумулятор выходит за рамки приличий (со свежезаряженным аккумулятором ток порядка 1 А - аккумулятору было уже лет 5, чего его так насиловать). А все дело в том, что для питания светодиода требуется напряжение порядка 3.4 - 3.6 В, в то время как NiMH аккумулятор выдает порядка 1.4 В в свежезаряженном состоянии (мой же и до 1.2 еле дотягивал), а по мере разрядки напряжение может упасть аж до 0.9 В (может и ниже, но тогда и аккумулятор быстро теряет емкость). Поэтому в данном фонарике стоит повышающий драйвер светодиода, т.е. плата, которая преобразует напряжение аккумулятора в те самые 3.4 - 3.6 В. При этом драйвер Sipik"а не пытается регулировать ток через светодиод - он выдает напряжение, какое получится (исходя из напряжения аккумулятора), а там будь что будет. Светодиод же достигает максимальной эффективности только на определенном рабочем токе, например, белый светодиод мощностью 1 Вт - при токе 350 мА. Ток через светодиод в моем случае был меньше.

Решил я поменять в фонарике драйвер с повышающего на понижающий, а NiMH аккумулятор заменить на литий-ионный типоразмера 14500. У литий-ионных аккумуляторов напряжение порядка 3.6 - 4.2 В, что очень хорошо подходит для питания белых светодиодов. Драйвер в данном случае стабилизирует ток через светодиод.

Драйвер нашел на FocalPrice, выбирал из нескольких магазинов - при закупке трех плат цена у FP была существенно ниже, чем в других магазинах.

Плата драйвера содержит три микросхемы AMC7135, каждая из которых обеспечивает ток 350 мА. Суммарный ток, соответственно, равен 1050 мА (микросхемы допускается включать параллельно - так они и соединены на плате). Я решил запитать светодиод током 350 мА (мощность 1 Вт), поскольку точных данных о светодиоде не было, а по косвенным признакам (заявленная яркость фонарика) он должен быть одноваттным. Нужный мне ток обеспечивает и одна микросхема AMC7135, поэтому две из трех микросхем я просто отпаял с платы и использовал в других осветительных устройствах (в частности, в велосипедной фаре, в которой до того вместо драйвера стоял балластный резистор). Плата драйвера отлично встала в фонарик, и светить он стал существенно ярче, чем на аккумуляторе АА и родном драйвере.

Вот так выглядит драйвер в соответствующем месте разобранного фонарика:

Выковырять его оттуда обратно я уже не смог - плотненько засел:).

Вот так выглядит драйвер на 7135 (слева) в сравнении с родным повышающим драйвером Sipik"а (справа).

И под другим углом - если интересно, можно почитать надписи на микросхемах:

Видно, что у Sipik"овского драйвера питание с корпуса фонарика берется с той стороны, где микросхемы - там есть кольцевая дорожка по краю платы, а у драйвера на AMC7135 ее нет (но есть на обратной стороне). Поэтому пришлось припаять кусочек медной фольги, завернутой через край платы (его видно вверху справа на самом первом фото). Ну, это работы на полминуты - даже если корпус Вашего фонарика не контактирует с обратной стороной платы, драйвер после такой доработки использовать можно.

Оставшиеся с заказа две платы я использую как источник микросхем AMC7135, которые оказалось не так просто купить в розницу.

Если соберетесь покупать этот драйвер, будьте внимательны: в последних комментариях покупателей на FocalPrice есть упоминание, что теперь на плате всего две микросхемы, и ток, соответственно, получится 700 мА, а не 1050 мА. Цена тоже снизилась по сравнению с той, по которой покупал я (у меня bulkrate-цена была $1.61, сейчас $1.07) - возможно, это как раз обусловлено отсутствием одной микросхемы.

Драйвер для светодиодного фонаря: широкий ассортимент продукции

Светодиодные фонари, как и любые другие электрические источники света (светильники, лампы и пр.), способны полноценно и бесперебойно функционировать в том случае, если имеется пускорегулирующее устройство - драйвер. Благодаря такому современному и инновационному устройству приборы могут работать практически вечно. В специализированном интернет-магазине ForLed представлен колоссальный ассортимент продукции. У нас каждый желающий сможет купить драйвер для фонаря, а также все необходимые комплектующие к нему. Современный мир - век светодиодов и именно поэтому источники питания пользуются широким спросом и востребованностью. Кроме того, драйвер фонарика выполняет ряд важных функций.

Во-первых, благодаря ему потребители значительно экономят денежные средства на приобретение новых электрических устройств, которые в несколько раз дороже самого драйвера;

Во-вторых, с помощью них светодиодные фонари могут полноценно и бесперебойно функционировать практически вечно.

Каталог продукции интернет-магазина ForLed предлагает колоссальный ассортимент пускорегулирующих элементов, отличающихся по производителю, входному напряжению (от 1-3В до 7-30В), выходному току (от 300 мА до 5000 мА), типу (линейные, импульсные и повышающие). В любом случае, каждый представленный автономный источник питания отличается безупречным качеством, надежностью, безопасностью, длительным сроком эксплуатации, а также простотой в работе. Такое устройство способно в полной мере обеспечить полноценную и бесперебойную работу светового прибора. Купить драйвер для светодиодного фонарика любого формата можно в интернет-магазине ФорЛед по справедливой и демократичной цене. Помимо, основного источника питания, в каталоге имеются необходимые комплектующие к нему.

Драйвера для светодиодных фонариков: на что следует обратить внимание

Для того, чтобы правильно выбрать автономный источник питания необходимо знать основные характеристики фонаря, а именно:

Напряжение в В;

Величина максимального тока в мА;

За счет чего происходит питания источника света: аккумулятор или батарейки;

Механизм управления: магнитный ползунок, обычная силовая, тактовая кнопка без фиксации и пр.;

А также диаметр и высота драйвера.

Представленные в ассортименте пускорегулирующие устройства могут иметь несколько режимов яркости, содержать информацию о разряде аккумуляторной батареи, а также отличаться памятью режимов. Такие разновидности делают драйвера более функциональными и удобными в использовании. В качестве стандартных режимов (не расширенных) выделяют несколько разновидностей: строб, средний и максимальный. В интернет-магазине ForLed каждый желающий может подробнее ознакомиться с ассортиментом и купить драйверы для светодиодных фонарей в Украине по выгодной цене. При возникновении вопросов или необходимостью получить профессиональную консультацию, ответственные менеджеры всегда готовы оказать квалифицированную помощь: подробнее рассказать о характеристиках того или иного драйвера, а также предложить правильную модель источника питания. Кроме того, в каталоге продукции представлены все необходимые комплектующие для фонариков.

Импульсный драйвер для питания светодиодов: преимущества использования

Купить драйвер для светодиодного фонаря любого типа: линейный, повышающий или импульсный можно в интернет-магазине ФорЛед. Последняя разновидность получила более широкое распространение, благодаря высокому уровню КПД (около 95%), а также его компактности. Устройства такого типа способны на выходе создавать высокочастотные импульсы тока, что благоприятно сказывается на светодиодных источниках света. Такой современный и функциональный драйвер для фонарика купить в Украине можно у нас по демократичной и разумной цене.

Загрузка...